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Cone cracks and the Auerbach relationship in 
diamond 
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Measurements have been made of the critical load, Pc, required to produce a cone crack when 
a polished surface of diamond is indented by a spherically tipped diamond indentor. Particular 
attention was paid to the polishing of both the indentor and the flat surface in order to reduce 
the scatter often observed in this type of experiment. The polish on the flat was a compromise 
between being as fine as possible to avoid scatter but not so fine that the indentor fractured 
before the flat. Measurements were made with indentors of radius, R, ranging from 50 to 
320#m, and the values of Pc were found to be approximately proportional to R, the so-called 
Auerbach relationship. These results are discussed in terms of a recent treatment of cone 
cracks in isotropic brittle solids by Mouginot and Maugis. After allowing for various uncertain- 
ties introduced by the anisotropy of diamond, reasonable agreement is obtained for the absol- 
ute magnitudes of Pc. The sizes of the cone cracks are significantly larger than those predicted, 
possibly because the anisotropy of the diamond causes the shape of the crack to depart frorn 
that of an ideal cone. 

1. I n t r o d u c t i o n  
A Hertz indentation test is made by pressing a hard 
spherical indentor on to a flat surface of the material 
under test and observing the critical load, Pc, required 
to produce a cone crack of the general form shown in 
Fig. 1. The test is relatively simple, requires only a 
small area of  material, and is widely used in the study 
of brittle materials. It is clear that the greater the 
critical load the greater the strength of the material 
but the relationship between load and strength is quite 
complex. 

A spherical i ndentor of  the same material as the 
specimen generates a radial tensile stress, o, lying in 
the surface of the specimen with a magnitude given by 
a solution of the Hertz equation, see for example 
Johnson [1] 

o = �89 - 2v)P/rcr 2 r > a 

= 0 r <  0 (1) 

where v is Poisson's ratio, P the load, r the radial 
distance from the centre of the indentation, and a the 
radius of  the area of  contact given by 

P R  
a 3 = ~ ( 1 - v  2) E (2) 

where R is the radius of  the indentor and E is Young's  
modulus. The stress, ~r, is the principle tensile stress 
and has its maximum value of { (1 - 2v)P/Tza 2 at the 
edge of the area of  contact, so one might expect the 
specimen to fracture when this stress reaches the ulti- 
mate tensile strength of the material. In this case it 
follows from Equation 2 that the critical loads obtained 

with indentors of  different radius should be propor- 
tional to the square of  the radius of  the indentor. 

In practice, virtually all brittle materials fracture at 
much lower loads and stresses. Diamond is no excep- 
tion and the critical stresses required to produce ring 
cracks are often an order of  magnitude less than the 
theoretical tensile stress, see for example Field [2] and 
Whitlock and Ruoff  [3]. In addition, it is often found 
in brittle materials that Pc is approximately propor- 
tional to R rather than to R 2, this linear form of 
dependence being known as the Auerbach relation- 
ship. It is generally agreed that the strength falls below 
the theoretical value because of microscopic cracks in 
the surface of the specimen which have the effect of  
increasing the stress at their tips by a factor which is 
of the order 2(C/O) b2 where c is the length of the crack 
perpendicular to the surface and 0 the radius of  the tip 
which is of  the order of  the atomic spacing. Compar-  
ing the measured strength with the calculated value it 
appears that in diamond the surface cracks are of  the 
order of  1 #m in length. 

The above brief description implies that the 
criterion for producing a cone crack in a Hertz test is 
that the applied load must produce a tensile stress 
sufficient to extend the surface cracks at the perimeter 
of  the area of contact. In fact, the position is more 
complex, because the inital crack never extends steadily 
to form the final cone crack. At first no cracking is 
visible, then as the load increases a fully developed 
cone crack is formed suddenly, extending outwards 
and downwards for a distance of the order of the 
radius of  the area of  contact. The tensile stress varies 
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Figure 1 Schematic diagram of the production of a Hertz cone 
crack. 

very considerably along the path of the crack and this 
variation must be taken into account in order to deter- 
mine criteria for the production of the cracks [4]. 

According to Frank and Lawn [4], small cracks at 
the surface grow under an applied load but as they 
penetrate deeper below the surface, the stress field 

acting on them decreases rapidly. Hence, after some 
increase in length they eventually stop growing and do 
not grow again until the applied stress reaches a new 
critical value, large enough to cause the crack to 
extend suddenly and irreversibly to form the full cone. 
It is this final critical load which is observed in the 
Hertz test. According to these authors the form of the 
stress field in the specimen has the effect of bringing all 
sufficiently small cracks to a common length before 
the load reaches the final critical value Pc, and this 
effect is responsible for the Auerbach relationship 
Pc oc R. However, although Frank and Lawn correctly 
emphasize the importance of the variation of the stress 
field along the crack, their treatment is unsatisfactory 
on two counts. First, they assume that the crack orig- 
inates on the perimeter of the area of contact whereas 
the crack is generally observed to form at somewhat 
greater values of r [4-6], and this results in appreciable 
differences in the stress fields acting on the crack [7]. 
Secondly, the details of the calculation including the 
derivation of  the Auerbach relationship depend very 
critically on the value of  the Poisson's ratio. Frank 
and Lawn [4] took v = �89 but many materials have a 
lower value which would cause significant differences 
[8]. Various modifications to the Frank and Lawn 
approach have been made by several authors, of 
which the most complete is that of Mouginot and 
Maugis [8] described below. 

Other authors [9-12] have given different explana- 
tions of the Auerbach relationship based on a model 
in which the surface cracks or flaws exhibit a range of 
lengths, the smaller flaws being the more common. It 
follows from Equations 1 and 2 that indentors of 
larger radius produce larger areas of stress in the flat 
surface, so a larger indentor is more likely to encoun- 
ter a longer crack, and an analysis of this situation 
leads to an Auerbach-type relationship. However, 
although the distribution of crack lengths is an impor- 
tant factor, these treatments also are unsatisfactory. 
They assume that the cracks begin on the perimeter of 
the area of contact, and do not consider the form of 
the stress field; for other criticisms see Mouginot and 
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Figure 2 General view of the apparatus. 

Maugis [8]. There is also the further objection that 
statistical treatments leading to an Auerbach relation- 
ship imply the existence of much more scatter in the 
values of the critical load than is often observed [13]. 

Diamond is a particularly good example of a brittle 
material showing little, if any, plastic deformation 
when deformed at room temperature, and therefore 
should be well described by theories of brittle fracture. 
There is, however, the complication that all the treat- 
ments mentioned above assume that the material is 
isotropic, whereas diamond is not, and tends to frac- 
ture along {1 1 1} cleavage planes. Even so, a discus- 
sion by Lawn [14] suggests that the effect of this 
anisotropy may be relatively small. Measurements of 
the critical load to produce Hertz cracks in diamond 
have been made by Howes [15] using indentors of 
tungsten carbide and sapphire, and by Ikawa et al. 

[16-19] using diamond indentors. Both sets of  authors 
used indentors of different radius, but do not discuss 
their results in terms of the Auerbach relationship. 

The results of  Ikawa et al. [16-19] on both natural 
and polished diamond faces show a great deal of 
scatter, for example the critical loads on polished 
{1 1 0} and {1 1 1} faces show a scatter over 10: 1. 
Quite possibly this scatter arises because of  variations 
in the surface of the specimens, in the roughness of the 
indentors, and possibly because of damage suffered by 
the indentors, as none of these parameters were well 
specified. The present experiments have been made to 
see whether it is possible to obtain results showing less 
scatter and to compare them with the predictions of 
the latest theoretical treatments, particularly that of 
Mouginot and Maugis [8]. 
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Figure 3 Schematic diagram of 
the apparatus. 

2. Experimental details 
2.1. Apparatus 
The essentials of the experimental arrangements are 
shown in a photograph and schematic diagram (Figs 2 
and 3). The indentor is carried on the end of a stainless 
steel rod which runs through a pair of continuous 
track linear bearings in which it slides freely with 
virtually no play. These bearings are mounted in the 
base of a brass chamber which surrounds the dia- 
monds and which permits indentations to be made in 
different gaseous atmospheres. The diamond flat in 
the form of a parallel-sided slab with polished faces is 
mounted as shown in Fig. 3 in a brass holder which 
screws into a traversing table whose position may be 
adjusted with micrometer screws. 

The indentor is forced against the underside of the 
diamond by an electric motor which slowly winds in a 
wire which pulls down one side of  a pivoted beam, the 
other end of which pushes up the steel rod. The force 
from the beam to the rod is transmitted by a steel ball 
to avoid any lateral thrusts and through a load cell to 
measure the applied force (the force on the indentor 
being the applied force less the weight of the rod). The 
spring in the length of wire (Fig. 3) is intended to 
smooth out any roughness or shocks arising in the 
motor. To ensure that the indentation is made normal 
to the face of the specimen, the two sides of the dia- 
mond slab are polished parallel to within 30', and the 
brass holder in the traversing table is machined so that 
the bearing face for the diamond is perpendicular to 
the axis of the steel rod. 

The production of a crack is detected by viewing the 
lower surface of the diamond slab with a Nomarski 
interference microscope at a magnification of x 100. 
The microscope was also used to inspect the tip of  the 
indentor after each indentation to check whether any 
damage had occurred. This was done by unscrewing 
the specimen holder from the traversing table and 
focusing the microscope on the indentor. (With the 
specimen re~noved it was possible to use a lens with 
a shorter working distance and a magnification of 
• 200). 

Before making a measurement, the indentor was 
very slowly and gently brought against the diamond 
slab by driving down the left-hand end of the beam 
using the micrometer shown in Fig. 3, this precaution 
being necessary as high stresses are generated by even 
very moderate impacts. The indentor was slowly raised 
until it just made contact with the slab as shown by a 
black dot appearing at the centre of the point of  
contact. Then to make a measurement the motor  was 
switched on and the beam steadily pulled down, the 
output of the load cell being fed to a chart recorder 
and the diamond specimen viewed in the microscope 
to note when the cone crack first appeared. The load 
on the indentor was applied at the rate of about 
0.2 kg rain -~, and the load cell was periodically cali- 
brated by placing weights in the pan on the left-hand 
end of the beam. 

2.2. The diamond styli and specimens 
The indentor in a Hertz test is usually much harder 
than the specimen, but as diamond is the hardest of all 
materials, the experiments have been made using dia- 
mond indentors. These diamond indentors presented 
two problems. First, diamonds are not isotropic and it 
is by no means easy to polish a smooth spherical 
surface. Second, because the styli are no harder than 
the specimen, they may fracture first. On the other 
hand, as both the specimen and the indentor have the 
same elastic constants, the indentation is not affected 
by frictional effects arising from relative surface 
motions of indentor and specimen [20]. 

It is difficult to produce a particular geometric sur- 
face on a diamond because the resistance of diamond 
to abrasion and polish depends greatly on the crys- 
tallographic orientations of  the polished surface and 
of the direction of  polish, see for example Wilks and 
Wilks [21]. Hence care must be taken to ensure that 
these differences in polishing rate do not affect the 
required geometric shape. Also, different directions of 
polish tend to give different qualities of  polish, the 
polish generally being smoother in directions in which 
the diamond is polished away more rapidly. The 
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Figure 4 Newton's rings formed by an indentor of radius 115~tm. 

indentors were polished in the same way as styli used 
in measurements of the friction [22] by swinging the 
diamond about horizontal and vertical axes during 
the polishing, the radius at the tip being determined by 
the distance of the wheel from the horizontal and 
vertical axes. 

The present styli were oriented so that the tangent 
plane was {001} rather than {110} as used by 
Samuels and Wilks because there is some evidence 
that [001} faces are more resistant than {110} to 
damage by indentation [15, 16]. However, styli with 
{001} tangent  planes are more difficult to polish 
because of the greater variations in the abrasion resist- 
ance and quality of polish about a {001} plane. Even 
so, by feeding the diamond slowly into the polishing 
wheel, surfaces were obtained which appeared smooth 
when viewed in the optical microscope at x 500 using 
Nomarski technique. The geometry of the tip was 
determined by observing the Newton rings produced 
against a flat (Fig. 4). Inevitably, the styli were not 
quite spherical but the two principal radii differed by 
no more than 11% at most and generally by about 5%. 
Each stylus was characterized by the mean radius. 

All the indentations were made on polished rather 
than natural diamond surfaces because the latter may 
contain a considerable but unknown amount  of  sur- 
face damage. Damage is also introduced by the polish- 
ing process, but by using controlled procedures it 
should be possible to obtain surfaces with reproduc- 
ible characteristics. All the indentations were made on 
a ( 1 1 0 ) f a c e  polished on a good quality colourless 
type I diamond, this orientation being chosen as per- 
haps more likely to fail before the indentor. The dia- 
mond was chosen to have good octahedron faces 
which permitted accurate goniometry, so that the two 
{ 110} faces forming the sides of  the transparent slab 
could be located and oriented to within 15 min of the 
true { 110} plane. The faces were polished on a stan- 
dard cast-iron wheel using 0 to 1 ktm diamond powder 
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Figure 5 Optical micrograph of a[l  10} diamond surface polished 
with 0 to I/~m diamond powder (Normarski technique). 

to obtain a fine finish, with the polishing lines only just 
visible in an optical microscope fitted with Nomarski 
technique (Fig. 5). 

The first indentations with styli and flats prepared 
as above showed that the tip of the stylus suffered 
damage in the form of visible cracks often during the 
first indentation and generally after only a few inden- 
tations. An attempt was made to strengthen the stylus 
by a chemical etch or polish to remove surface cracks. 
This technique was very successful in producing a 
smooth surface but also p roduced  an unwanted 
change in geometry in that curved facets were now 
visible, adjacent facets meeting with some disconti- 
nuity of curvature at their boundaries. An attempt 
was also made to obtain a finer polish with a wheel of  
dry mild steel but this wore so quickly that it was not 
possible to maintain the radius of the tip. 

Having failed to prevent damage to the indentor by 
improving its polish, an attempt was made to reduce 
the surface strength of the specimen by polishing so as 
to obtain a rougher surface with deeper surface cracks. 
Two methods were used, polishing in the usual (001  ) 
direction of easy abrasion with larger 5 to 10#m 
powder, and polishing with 0 to 1 ktm powder in the 
hard ( 1 1 0 )  direction of abrasion. Both methods 
resulted in reduced critical loads but the use of  the 
finer powder in the hard direction was preferred as the 
resulting polish was more uniform, a typical surface 
being shown in Fig. 6. The effect of the polish on the 
critical load is shown in Fig. 7 which shows the critical 
loads obtained in indentations on fine and coarsely 
polished surfaces as described above using indentors 
of  similar but not identical radius. The lines on the 
figure indicate the full range of the observed values 
and n the number of indentations on each surface. 
The critical loads  on the coarsely polished surface 
are much reduced and the styli making these inden- 
tations showed no sign of  damage; therefore this 
type of polished surface was used for the main 
experiment. 



Figure 6 Optical micrograph of  a { I 1 0} diamond surface polished 
with 0 to I #m powder in the hard direction (Normarski technique). 

3. R e s u l t s  
3.1. Critical loads 
The critical load Pc required to produce a conical 
crack was measured as a function of the radius of the 
indentor. The radii available were limited at the lower 
end by the difficulty of forming radii smaller than 
about 50 #m. The limit at the upper end was set by the 
design of the apparatus which could only accommodate 
loads up to about 5 kg weight. 

All the final measurements were made on {1 10} 
faces polished in a hard (1 10) direction using 0 to 
1/xm diamond powder on a cast-iron scaife. The 
spacing between the indentations was at least ten times 
their surface radius to avoid any interference between 
the stress fields. When a surface was repolished, 
care was taken to remove all traces of previous 
indents. 

Our results for a range of styli are shown in Fig. 8, 
which gives the number of indentations made with 
each tip, the spread of values obtained for the critical 
load, the mean loads, and the standard deviation for 
each set of values. The scatter on the critical loads is 
still appreciable but is considerably less than in some 
of the earlier work. (Most of these earlier values are 
presented as critical stresses rather than critical loads 
with the result that the scatter appears much reduced 
because the stresses are proportional to p~3.) We 
see that the critical load varies linearly with the 
radius of the indentor for the smaller radii and then 
rises some-what faster than linearly for the larger 
radii. 

Experiments which give the critical load as a func- 
tion of indentor radius have also been made by Ikawa 
et al. [16-19]. However, these authors present their 
results as the mean pressures, P0, on the diamond or 
the tensile stresses, am, in the surface at the edge of the 
circle of contact, calculated from the loads by the 
Hertz relationship 

P0 = P//cc(2 = ( p l / 3 / g ) [ 2 E / 3 ( 1 -  v)2R) 2/3 
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with the appropriate values for the Young's modulus, 
the Poisson ratio, and the radius of  the indentor. 
Fig. 9 shows the results of Ikawa and Shimada [17] 
converted back into critical loads, and we see that, 
although there is considerable scatter, they give a 
further example of the Auerbach relationship in dia- 
mond. We note that although these results were 
obtained on a natural { 1 1 1 } surface, the critical loads 
are quite similar to our values obtained on polished 
{1 10} surfaces. 

3.2. Geometry of the cracks 
Because diamond is crystalline and not isotropic, the 
cracks are not exactly circular. Fig. 10 shows a typical 
optical micrograph of  a fine polished surface after the 
production of a crack. The outline of the crack tends 
to follow the traces of  { l 1 1 } cleavage planes coming 
up to the surface. Two of these traces lie in <1 1 0) 
directions with the {1 1 1} planes making angles of 
35~ , with the surface, and four of the traces lie in 
< 1 1 2) directions with the {1 1 1 } planes perpendicular 
to the surface. A rather similar but four-sided distor- 
tion of ring cracks is observed on {0 0 1 } surfaces, see 
for example [16]. In the present experiments the stylus 
was always oriented so that a cube axis was parallel to 
the [1 1 0] direction on the surface. 



cracks, c, measured along the downward path of the 
crack, derived from about 20 cracks in all. The table 
also gives values for the ratio c/a where a is the radius 
of the area of contact calculated from the load using 
the Hertz equations, this ratio being a useful par- 
ameter in the theoretical treatments. 

Figure 10 Ring crack on {1 10} surface of  d iamond viewed with 
Normarsk i  technique. 

A characteristic feature in Fig. 10 which is seen on 
most cracks consists of two subsidary cracks which 
run out from the approximately (1 1 0) sides of the 
main ring. It appears that these subsidiary cracks arise 
as the inital flaw spreads round the indentor because 
of a tendency for the crack to remain in the {1 1 1} 
planes with (1 1 0) traces rather than follow the stress 
field. No similar branching cracks are seen at the other 
ends of  the (1 I 0) sides of the ring, therefore the crack 
must have initiated on the right-hand side of the ring 
and then run round on an upper and lower path to the 
left, each path splitting into two as the stress field 
turns away from the (1 1 0) traces. We would expect 
thecrack to initiate on one of the (1 1 2) sets of{1 1 1} 
planes as these are perpendicular to the surface and 
experience the greater resolved tensile strength. On the 
other hand, when the conical crack has formed and is 
beginning to expand it will prefer to follow the ( 1 1 0) 
set of {1 1 1} planes because these are more nearly 
inclined to the position of the stress field. The geo- 
metrical form of the ring cracks is readily seen on well 
polished surfaces, but in our main experiments with a 
rougher polish both the critical loads and the rings 
were smaller so detail was lost in the surface rough- 
ness. However, it seems likely that the geometries of 
the cracks were similar to those described above. 

The length of the ring cracks measured down from 
the surface is not readily obtained by optical inspec- 
tions. However, order of magnitude estimates were 
found by polishing down on the surface of  the dia- 
mond and observing when the cracks disappeared, 
while at the same time measuring the depth of surface 
removed by monitoring the depths of three abrasion 
cuts with a Talysurf. It was found that the cracks were 
seldom uniformly deep, being generally deepest on the 
side where they initiated and least deep on the opposite 
side between the two subsidiary cracks, presumably 
because the elastic energy driving the crack is divided 
when the subsidiary cracks branch out. This difference 
in depth was most marked on the rougher surfaces 
where the lengths were difficult to measure. To sum- 
marize our results, Table I gives the mean length of the 

4. Theory 
The most complete theoretical treatment is that of 
Mouginot and Maugis [8] who like previous authors 
calculate the stress field responsible for propagating 
the crack as a function of the length of the crack. They 
assume a uniform distribution of initial flaw cracks of 
length cr and show that the load required to extend the 
crack depends on the value of cf, on the radius of the 
indentor, and on the radial distance of the crack from 
the centre of the indentor. The stress field below the 
surface of the specimen falls off more rapidly near the 
edge of  the area of contact than further out, so for a 
flaw of given length, cr, the stress at the tip may be 
greater if the crack is further from the area of contact. 
In addition, the authors make two further assump- 
tions. They assume that the material is isotropic and 
that the conical crack has circular symmetry about the 
axis of the indentor. That  is, they assume that once a 
flaw crack begins to grow it immediately spreads 
round to form a ring, and that the subsequent growth 
of this ring crack may be discussed without reference 
to the details of this initial process. However, Fig. 10 
shows that this is certainly a non-trivial assumption in 
the case of diamond. 

Mouginot and Maugis consider a circular crack 
running down a distance c, measured along its length 
and whose radius at the surface is r 0 where r o >~ a, the 
radius of the area of contact. The extension of this 
crack is determined by the strain energy release rate, 
G, which is the energy provided by the stress field per 
unit extension of the crack length. The release rate is 
given by 

4 1 - -  I~ 2 p2 
G - r~ 3 E a3 ~ ( c / a )  (3) 

where qb (c/a) is a function of the elastic stress field, the 
Poisson ratio v, and the initial position of the crack r0. 
Fig. 11 (fi'om [8]) shows curves of ao (c/a) for several 
values of ro/a, calculated for v = 0.22. 

The condition for a crack to extend is that the stress 
is sufficient to provide the additional energy required 
to separate the new surfaces, that is 

G = 27 (4) 

where 7 is the cleavage energy for each surface. This 
critical condition may be rewritten using Equations 2 
and 3 as 

( ( i ) ) c r i  t = ( 9 9 3 / 8 ) (  1 _ v2 ) 7 R  2 1 
E a 3 (5)  

T A B L E  1 

R -  48 R -  103 R -  161 

Fine polish c - 3.8,um 
Rough polish c = 2 .7#m c = 7 .7#m 

Fine polish c/a = 2.3 
Rough polish c/a - 0.46 c/a = 0.53 
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Figure 11 The function @ plotted against c/a after Mouginot and 
Maugis [8], see text. The values of ro/a run from 1.00 to 1.60. 

o r  a s  c = Cf 

((I))crit = (9rc3/8)(1 - v2) Ec~ (6) 

Hence a plot of ln(q))o,jt against ln(q/a) gives a straight 
line of slope 3 and a set of these lines are shown in 
Fig. 11 for different values of the parameter (TR2/Ec~). 
A cone crack initiates when the value of G for one 
of the cracks reaches the value 2 7, and the correspond- 
ing value of q) is given by the intersection of one of the 
straight lines and one of the curves in Fig. 11. For  

example, for a flaw size cf and (?R2/Ec~) = 10 the 
critical value of q~ is where the line labelled 10 cuts the 
curve which gives the highest value of @ at the inter- 
section, in this case the curve for r0 = 1.10a. Then, 
using Equation 2 to substitute for a 3 in Equation 3, it 
follows that 

Pc = (3%3/4di)crit)7 R (7) 

hence by taking a range of values of cf it is possible to 
construct a curve of  Pc/TR against (R/c~ '2) as in 
Fig. 12. Once the crack begins to extend, the value of 
(c/a) increases and both �9 and G increase so that the 
crack expands irreversibly until the condition G = 2 7 
is again met at a greater value of (c/a), and this second 
value of (c/a) gives the length of the crack formed 
under the critical load. These values are also shown in 
Fig. 12. 

5 .  D i s c u s s i o n  
The values for the critical load calculated by Mougi- 
not and Maugis show at least two distinct regions 
(Fig. 12). First the region near the minimum in the 
curve of Po/TR against R/c{/2 which corresponds to the 
Auerbach regime where Pc oc R. Second, the region 
with high values of R/c~/2 corresponds to large indentors 
and small flaws where the stress field remains approxi- 
mately constant over the length of the crack. In this 
second case the critical tensile stress 

G m OC P/a 2 oc pU3 oc R 2/3 

and the critical load Pc ~ R2 as shown by the line 
marked "undiminishing stress field". In fact, the criti- 
cal loads measured in the present experiments are 
proportional to the radius of the interior for the smal- 
ler radii but rise rather faster than linearly for the 
larger radii. Hence these results appear to correspond 
to that part of the curve for Pc/?R near and just to the 
right of the minimum. 
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Figure 12 Critical loads, Pc (lower curves), and equilibrium 
lengths of crack, c (upper curves), in reduced coordinates 
as a function of the radius of the indentor, after Mouginot 
and Maugis [8], see text. 



Mouginot  and Maugis estimate that the value of the 
critical load in the Auerbach region for an isotropic 
solid with v = 0.22 is given by 

Pc = 6.7 • 103K,/R (8) 

where K = 2 when the indentor and flat are of  the 
same materials. In order to derive the value of Pc 
for diamond we recall that Equation 8 is derived 
from values of  OO(c/a) in Fig. 11 which depend on the 
value of the Poisson ratio, and that as diamond is not 
isotropic this ratio varies considerably with direction. 
Field [2] quotes values ranging from 0.01 to over 0.2 
and suggests a mean value of 0.1, while Ruoff  [23] has 
computed the value of 0.07 for an "isotropic polycrys- 
talline aggregate". A complete solution of the elastic 
equations can only be obtained by taking account of  
the variation of v along the path of the crack, but as 
an approximation we follow Field and take ~,' = 0.1. 
Curves of  q~(c/a) given by Mouginot  and Maugis for 
v = 0.45, 0.35, 0.25, 0.22 and 0.15 show that the 
influence of v is considerable, the maximum values of  
OO(c/a) for v = 0.35 and 0.15 differing by a factor of  
over 10. However, by a reasonable extrapolation we 
estimate that the maximum value of ~(c/a) for 
v = 0.1 is increased from its value for v = 0.22 by a 
factor 2.6. We also need the appropriate value ofy  for 
cone cracks on {1 1 0} faces and take the value given 
by Field and Freeman [24] namely ~/ = 7 .1 Jm 2 
(although some corrections may be needed to allow 
for the fact that these authors took v = 0.2). Sub- 
stituting these values into Equation 8 we obtain the 
relationship (Pc)di . . . .  d = 3.1 • 104 R which is shown 
in Fig. 8. 

The theoretical line in Fig. 8 differs from the pos- 
ition of the measured loads by a factor of  about times 
two. This is almost certainly as good agreement as can 
be expected because of the uncertainties in the calcu- 
lation arising from the anisotropy of the diamond. 
Any discussion of the mechanics of  crack propagation 
in anisotropic material in terms of mean values of  the 
elastic constants can only be an approximation,  and 
the present calculations are particularly sensitive to 
the value of v. (If  v = 0.2, the calculated loads are in 
close agreement with the observed loads for the three 
smallest styli, but this is of  little significance in view of 
the various uncertainties.) 

The treatment of  Mouginot  and Maugis also pre- 
dicts the size of  the cone crack produced by the critical 
load. Fig. 12 shows the equilibrium size, c, of  the final 
cone crack expressed as the ratio c/a corresponding to 
different values of  R/c~/a and Pc/TR for a material of  
Poisson ratio v = 0.22 and 7/E = 5 x 10 L~m. 
These results are not readily applicable to an aniso- 
tropic material with different elastic constants, but we 
expect the general shape of the curves for diamond to 
be similar though shifted to different values. The form 
of the curves for c/a in Fig. 12 are rather similar to 
those for the critical load, so c/a has a value approxi- 
mately independent of  R/c~/2 near the Auerbach 
regime. In fact, Table I shows that the measured 
values of  c/a on the rougher diamond surfaces where 
the critical loads followed the Auerbach relationship 
were approximately the same for two styli whose radii 

differed by a factor of  over 3. On a surface with a finer 
polish we would expect that crwould be smaller so that 
the relevant values of  l{/C~ :2 in Fig. 12 are shifted 
further to the right, resulting in high values for the 
equilibrium crack size c/a. Table I also shows that a 
measured value of c/a on the smoother surface was 
about  five times greater than that on the rougher 
surface. 

It should be noted that the critical loads and stresses 
observed in a Hertz indentation experiment are so 
dependent on the relative values of  initial crack size 
and indentor radius that the results of  these tests 
cannot be expressed as a single value characterizing 
the strength of the diamond. The strength of diamond 
against fracture is much below its theoretical tensile 
strength and is determined by the presence of small 
cracks or flaws. Both our experiments and those of 
Ikawa and Shimada give examples of  critical loads 
being smaller when a surface is more roughly polished. 
Yet in the Auerbach region the value of the critical 
load does not depend appreciably on the value of the 
initial flaw length, Cr, a result which arises from the 
particular geometry of the stress fields. It seems likely 
that this effect may account for the fact that experi- 
ments on different diamonds with different polishes 
and flaws sometimes give rather similar critical loads. 
For example, the critical stresses observed by Ikawa 
et al. [16-19] correspond to critical loads of  similar 
magnitude to our values, even though they refer mainly 
to both natural and polished {1 1 1} faces where one 
might expect flaws of different sizes and distributions. 
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